H2O
H2O is an Open Source Fast Scalable Machine Learning Platform For Smarter Applications: Deep Learning, Gradient Boosting & XGBoost, Random Forest, Generalized Linear Modeling (Logistic Regression, Elastic Net), K-Means, PCA, Stacked Ensembles, Automatic Machine Learning (AutoML), etc. It is also the name of the company supporting the Open Source project.
Related articles
H2O in practice: a protocol combining AutoML with traditional modeling approaches
Categories: Data Science, Learning | Tags: Automation, Cloud, H2O, Machine Learning, MLOps, On-premises, Open source, Python, XGBoost
H20 comes with a lot of functionalities. The second part of the series H2O in practice proposes a protocol to combine AutoML modeling with traditional modeling and optimization approach. The objectiveā¦
Nov 12, 2021
H2O in practice: a Data Scientist feedback
Categories: Data Science, Learning | Tags: Automation, Cloud, H2O, Machine Learning, MLOps, On-premises, Open source, Python
Automated machine learning (AutoML) platforms are gaining popularity and becoming a new important tool in the data scientistsā toolbox. A few months ago, I introduced H2O, an open-source platform forā¦
Sep 29, 2021
Faster model development with H2O AutoML and Flow
Categories: Data Science, Learning | Tags: Automation, Cloud, H2O, Machine Learning, MLOps, On-premises, Open source, Python
Building Machine Learning (ML) models is a time-consuming process. It requires expertise in statistics, ML algorithms, and programming. On top of that, it also requires the ability to translate aā¦
Dec 10, 2020
MLflow tutorial: an open source Machine Learning (ML) platform
Categories: Data Engineering, Data Science, Learning | Tags: AWS, Azure, Databricks, Deep Learning, Deployment, Machine Learning, MLflow, MLOps, Python, Scikit-learn
Introduction and principles of MLflow With increasingly cheaper computing power and storage and at the same time increasing data collection in all walks of life, many companies integrated Data Scienceā¦
Mar 23, 2020