Apache Parquet
Apache Parquet est un format open-source, binaire, de stockage en colonnes dans l'écosystème Hadoop. Il est particulièrement adapté aux environnements Big Data car il permet la parallélisation multi-disque et une compression efficace.
- En savoir plus
- Site officiel
Articles associés
Comparaison des architectures de base de données : data warehouse, data lake and data lakehouse
Catégories : Big Data, Data Engineering | Tags : Gouvernance des données, Infrastructure, Iceberg, Parquet, Spark, Data Lake, Lakehouse, Entrepôt de données (Data Warehouse), Format de fichier
Les architectures de base de données ont fait l’objet d’une innovation constante, évoluant avec l’apparition de nouveaux cas d’utilisation, de contraintes techniques et d’exigences. Parmi les trois…
17 mai 2022
H2O en pratique : un protocole combinant AutoML et les approches de modélisation traditionnelles
Catégories : Data Science, Formation | Tags : Automation, Cloud, H2O, Machine Learning, MLOps, On-premises, Open source, Python, XGBoost
H20 est livré avec de nombreuses fonctionnalités. La deuxième partie de la série H2O en pratique propose un protocole pour combiner la modélisation AutoML avec des approches de modélisation et d…
12 nov. 2021
H2O en pratique: retour d'expérience d'un Data Scientist
Catégories : Data Science, Formation | Tags : Automation, Cloud, H2O, Machine Learning, MLOps, On-premises, Open source, Python
Les plates-formes d’apprentissage automatique (AutoML) gagnent en popularité et deviennent un outil puissant à disposition des data scientists. Il y a quelques mois, j’ai présenté H2O, une plate-forme…
29 sept. 2021
Espace de stockage et temps de génération des formats de fichiers
Catégories : Data Engineering, Data Science | Tags : Avro, HDFS, Hive, ORC, Parquet, Big Data, Data Lake, Format de fichier, JavaScript Object Notation (JSON)
Le choix d’un format de fichier approprié est essentiel, que les données soient en transit ou soient stockées. Chaque format de fichier a ses avantages et ses inconvénients. Nous les avons couverts…
Par NGOM Barthelemy
22 mars 2021
Développement accéléré de modèles avec H2O AutoML et Flow
Catégories : Data Science, Formation | Tags : Automation, Cloud, H2O, Machine Learning, MLOps, On-premises, Open source, Python
La construction de modèles de Machine Learning (ML) est un processus très consommateur de temps. De plus, il requière de bonne connaissance en statistique, en algorithme de ML ainsi qu’en…
10 déc. 2020
Comparaison de différents formats de fichier en Big Data
Catégories : Big Data, Data Engineering | Tags : Business Intelligence, Data structures, Avro, HDFS, ORC, Parquet, Traitement par lots, Big Data, CSV, JavaScript Object Notation (JSON), Kubernetes, Protocol Buffers
Dans l’univers du traitement des données, il existe différents types de formats de fichiers pour stocker vos jeu de données. Chaque format a ses propres avantages et inconvénients selon les cas d…
Par NGOM Aida
23 juil. 2020
Importer ses données dans Databricks : tables externes et Delta Lake
Catégories : Data Engineering, Data Science, Formation | Tags : Parquet, AWS, Amazon S3, Azure Data Lake Storage (ADLS), Databricks, Delta Lake, Python
Au cours d’un projet d’apprentissage automatique (Machine Learning, ML), nous devons garder une trace des données test que nous utilisons. Cela est important à des fins d’audit et pour évaluer la…
21 mai 2020
Stockage HDFS et Hive - comparaison des formats de fichiers et compressions
Catégories : Data Engineering | Tags : Business Intelligence, Hive, ORC, Parquet, Format de fichier
Il y a quelques jours, nous avons conduit un test dans le but de comparer différents format de fichiers et méthodes de compression disponibles dans Hive. Parmi ces formats, certains sont natifs à HDFS…
Par WORMS David
13 mars 2012