MLflow Machine Learning Lifecycle Platform

MLflow est une plateforme permettant de rationaliser le développement de l’apprentissage automatique (Machine Learning), notamment le suivi des expérimentations, le packaging de code dans des exécutions reproductibles, ainsi que le partage et le déploiement de modèles.

Articles associés

Stage de fin d'étude printemps 2022 en Data Engineering

Stage de fin d'étude printemps 2022 en Data Engineering

Catégories : Front End, Formation | Tags : Métriques, Supervision, Hadoop, Hive, Kafka, Delta Lake, Elasticsearch, IaC, Internship, Kubernetes, MLflow, Prometheus, Streaming, TFX

Descriptif du stage La donnée est un actif précieux des entreprises. Le data engineer collecte, convertit et valorise la donnée brute en une information exploitable par les business analysts et les…

WORMS David

Par WORMS David

25 oct. 2021

Guide d'apprentissage pour vous former au Big Data & à L'IA avec la plateforme Databricks

Guide d'apprentissage pour vous former au Big Data & à L'IA avec la plateforme Databricks

Catégories : Data Engineering, Formation | Tags : Cloud, Data Lake, Databricks, Delta Lake, MLflow

Databricks Academy propose un programme de cours sur le Big Data, contenant 71 modules, que vous pouvez suivre à votre rythme et selon vos besoins. Il vous en coûtera 2000 $ US pour un accès illimité…

KNYAZEVA Anna

Par KNYAZEVA Anna

26 mai 2021

Versionnage des données et ML reproductible avec DVC et MLflow

Versionnage des données et ML reproductible avec DVC et MLflow

Catégories : Data Science, DevOps & SRE, Évènements | Tags : Data Engineering, Databricks, Delta Lake, Git, Machine Learning, MLflow, Storage

Notre présentation sur la gestion de versions sur des données et le développement reproductible d’algorithmes de Machine Learning proposé au Data + AI Summit (anciennement Spark + AI) est accepté. La…

KAFERLE DEVISSCHERE Petra

Par KAFERLE DEVISSCHERE Petra

30 sept. 2020

Suivi d'expériences avec MLflow sur Databricks Community Edition

Suivi d'expériences avec MLflow sur Databricks Community Edition

Catégories : Data Engineering, Data Science, Formation | Tags : Spark, Databricks, Deep Learning, Delta Lake, Machine Learning, MLflow, Notebook, Python, Scikit-learn

Introduction au Databricks Community Edition et MLflow Chaque jour, le nombre d’outils permettant aux Data Scientists de créer des modèles plus rapidement augmente. Par conséquent, la nécessité de…

KAFERLE DEVISSCHERE Petra

Par KAFERLE DEVISSCHERE Petra

10 sept. 2020

MLflow tutorial : une plateforme de Machine Learning (ML) Open Source

MLflow tutorial : une plateforme de Machine Learning (ML) Open Source

Catégories : Data Engineering, Data Science, Formation | Tags : AWS, Azure, Databricks, Deep Learning, Déploiement, Machine Learning, MLflow, MLOps, Python, Scikit-learn

Introduction et principes de MLflow Avec une puissance de calcul et un stockage de moins en moins chers et en même temps une collecte de données de plus en plus importante dans tous les domaines, de…

Mise en production d'un modèle de Machine Learning

Mise en production d'un modèle de Machine Learning

Catégories : Big Data, Data Engineering, Data Science, DevOps & SRE | Tags : DevOps, Exploitation, IA, Cloud, Machine Learning, MLOps, On-premises, Schéma

“Le Machine Learning en entreprise nécessite une vision globale […] du point de vue de l’ingénierie et de la plateforme de données”, a expliqué Justin Norman lors de son intervention sur le…

RYNKIEWICZ Oskar

Par RYNKIEWICZ Oskar

30 sept. 2019

Canada - Maroc - France

Nous sommes une équipe passionnée par l'Open Source, le Big Data et les technologies associées telles que le Cloud, le Data Engineering, la Data Science le DevOps…

Nous fournissons à nos clients un savoir faire reconnu sur la manière d'utiliser les technologies pour convertir leurs cas d'usage en projets exploités en production, sur la façon de réduire les coûts et d'accélérer les livraisons de nouvelles fonctionnalités.

Si vous appréciez la qualité de nos publications, nous vous invitons à nous contacter en vue de coopérer ensemble.

Support Ukrain