KAFERLE DEVISSCHERE Petra

Data Scientist et Data Engineer

Articles publiés

H2O en pratique : un protocole combinant AutoML et les approches de modélisation traditionnelles

H2O en pratique : un protocole combinant AutoML et les approches de modélisation traditionnelles

Catégories : Data Science, Formation | Tags : Automation, Cloud, H2O, Machine Learning, MLOps, On-premises, Open source, Python, XGBoost

H20 est livré avec de nombreuses fonctionnalités. La deuxième partie de la série H2O en pratique propose un protocole pour combiner la modélisation AutoML avec des approches de modélisation et d…

H2O en pratique: retour d'expérience d'un Data Scientist

H2O en pratique: retour d'expérience d'un Data Scientist

Catégories : Data Science, Formation | Tags : Automation, Cloud, H2O, Machine Learning, MLOps, On-premises, Open source, Python

Les plates-formes d’apprentissage automatique (AutoML) gagnent en popularité et deviennent un outil puissant à disposition des data scientists. Il y a quelques mois, j’ai présenté H2O, une plate-forme…

KAFERLE DEVISSCHERE Petra

Par KAFERLE DEVISSCHERE Petra

29 sept. 2021

TensorFlow Extended (TFX) : les composants et leurs fonctionnalités

TensorFlow Extended (TFX) : les composants et leurs fonctionnalités

Catégories : Big Data, Data Engineering, Data Science, Formation | Tags : Beam, Data Engineering, Pipeline, CI/CD, Data Science, Deep Learning, Déploiement, Machine Learning, MLOps, Open source, Python, TensorFlow

La mise en production des modèles de Machine Learning (ML) et de Deep Learning (DL) est une tâche difficile. Il est reconnu qu’elle est plus sujette à l’échec et plus longue que la modélisation…

Développement accéléré de modèles avec H2O AutoML et Flow

Développement accéléré de modèles avec H2O AutoML et Flow

Catégories : Data Science, Formation | Tags : Automation, Cloud, H2O, Machine Learning, MLOps, On-premises, Open source, Python

La construction de modèles de Machine Learning (ML) est un processus très consommateur de temps. De plus, il requière de bonne connaissance en statistique, en algorithme de ML ainsi qu’en…

KAFERLE DEVISSCHERE Petra

Par KAFERLE DEVISSCHERE Petra

10 déc. 2020

Versionnage des données et ML reproductible avec DVC et MLflow

Versionnage des données et ML reproductible avec DVC et MLflow

Catégories : Data Science, DevOps & SRE, Évènements | Tags : Data Engineering, Databricks, Delta Lake, Git, Machine Learning, MLflow, Storage

Notre présentation sur la gestion de versions sur des données et le développement reproductible d’algorithmes de Machine Learning proposé au Data + AI Summit (anciennement Spark + AI) est accepté. La…

KAFERLE DEVISSCHERE Petra

Par KAFERLE DEVISSCHERE Petra

30 sept. 2020

Suivi d'expériences avec MLflow sur Databricks Community Edition

Suivi d'expériences avec MLflow sur Databricks Community Edition

Catégories : Data Engineering, Data Science, Formation | Tags : Spark, Databricks, Deep Learning, Delta Lake, Machine Learning, MLflow, Notebook, Python, Scikit-learn

Introduction au Databricks Community Edition et MLflow Chaque jour, le nombre d’outils permettant aux Data Scientists de créer des modèles plus rapidement augmente. Par conséquent, la nécessité de…

KAFERLE DEVISSCHERE Petra

Par KAFERLE DEVISSCHERE Petra

10 sept. 2020

Importer ses données dans Databricks : tables externes et Delta Lake

Importer ses données dans Databricks : tables externes et Delta Lake

Catégories : Data Engineering, Data Science, Formation | Tags : Parquet, AWS, Amazon S3, Azure Data Lake Storage (ADLS), Databricks, Delta Lake, Python

Au cours d’un projet d’apprentissage automatique (Machine Learning, ML), nous devons garder une trace des données test que nous utilisons. Cela est important à des fins d’audit et pour évaluer la…

MLflow tutorial : une plateforme de Machine Learning (ML) Open Source

MLflow tutorial : une plateforme de Machine Learning (ML) Open Source

Catégories : Data Engineering, Data Science, Formation | Tags : AWS, Azure, Databricks, Deep Learning, Déploiement, Machine Learning, MLflow, MLOps, Python, Scikit-learn

Introduction et principes de MLflow Avec une puissance de calcul et un stockage de moins en moins chers et en même temps une collecte de données de plus en plus importante dans tous les domaines, de…

Canada - Maroc - France

Nous sommes une équipe passionnée par l'Open Source, le Big Data et les technologies associées telles que le Cloud, le Data Engineering, la Data Science le DevOps…

Nous fournissons à nos clients un savoir faire reconnu sur la manière d'utiliser les technologies pour convertir leurs cas d'usage en projets exploités en production, sur la façon de réduire les coûts et d'accélérer les livraisons de nouvelles fonctionnalités.

Si vous appréciez la qualité de nos publications, nous vous invitons à nous contacter en vue de coopérer ensemble.

Support Ukrain