Machine Learning
L'apprentissage automatique est un sous-domaine de l'intelligence artificielle. L'objectif est de construire une description ou un modèle mathématique des données dont nous disposons afin de pouvoir acquérir une nouvelle compréhension du système ou de prédire son comportement futur. Les approches peuvent être divisées en trois catégories :
- Apprentissage supervisé - les observations sont annotées, ce qui signifie que chaque observation appartient à une classe connue. L'objectif est de prédire cette classe pour nouvelles observations, comme elle est inconnue. Quelques algorithmes : régression linéaire et logistique, arbres de décision, machines à vecteurs de support, réseaux de neurones artificiels.
- Apprentissage non supervisé - les données ne sont pas annotées. L'objectif est de découvrir de nouvelles connaissances avec un minimum de supervision humaine. Des exemples d'algorithmes sont le clustering, l'analyse des composants principaux et les règles d'association.
- Apprentissage par renforcement - n'a pas besoin de données annotées. Un agent existe dans un environnement dans lequel il prend des actions pour atteindre un objectif. Pour chaque action, elle peut être récompensée positivement ou négativement. Après avoir répété plusieurs fois la même séquence d'actions, il cherche à maximiser la récompense et minimiser l’effort. Ainsi il apprend la manière optimale d'accomplir une tâche. Deux catégories d'algorithmes sont les algorithmes sans modèle et les algorithmes basés sur le modèle.
- En savoir plus
- Wikipédia
Articles associés
H2O en pratique : un protocole combinant AutoML et les approches de modélisation traditionnelles
Catégories : Data Science, Formation | Tags : Automation, Cloud, H2O, Machine Learning, MLOps, On-premises, Open source, Python, XGBoost
H20 est livré avec de nombreuses fonctionnalités. La deuxième partie de la série H2O en pratique propose un protocole pour combiner la modélisation AutoML avec des approches de modélisation et d…
12 nov. 2021
H2O en pratique: retour d'expérience d'un Data Scientist
Catégories : Data Science, Formation | Tags : Automation, Cloud, H2O, Machine Learning, MLOps, On-premises, Open source, Python
Les plates-formes d’apprentissage automatique (AutoML) gagnent en popularité et deviennent un outil puissant à disposition des data scientists. Il y a quelques mois, j’ai présenté H2O, une plate-forme…
29 sept. 2021
Guide d'apprentissage pour vous former au Big Data & à L'IA avec la plateforme Databricks
Catégories : Data Engineering, Formation | Tags : Cloud, Data Lake, Databricks, Delta Lake, MLflow
Databricks Academy propose un programme de cours sur le Big Data, contenant 71 modules, que vous pouvez suivre à votre rythme et selon vos besoins. Il vous en coûtera 2000 $ US pour un accès illimité…
Par KNYAZEVA Anna
26 mai 2021
Apache Liminal, quand le MLOps rencontre le GitOps
Catégories : Big Data, Orchestration de conteneurs, Data Engineering, Data Science, Tech Radar | Tags : Data Engineering, CI/CD, Data Science, Deep Learning, Déploiement, Docker, GitOps, Kubernetes, Machine Learning, MLOps, Open source, Python, TensorFlow
Apache Liminal propose une solution clés en main permettant de déployer un pipeline de Machine Learning. C’est un projet open-source, qui centralise l’ensemble des étapes nécessaires à l’entrainement…
Par COINTEPAS Aargan
31 mars 2021
TensorFlow Extended (TFX) : les composants et leurs fonctionnalités
Catégories : Big Data, Data Engineering, Data Science, Formation | Tags : Beam, Data Engineering, Pipeline, CI/CD, Data Science, Deep Learning, Déploiement, Machine Learning, MLOps, Open source, Python, TensorFlow
La mise en production des modèles de Machine Learning (ML) et de Deep Learning (DL) est une tâche difficile. Il est reconnu qu’elle est plus sujette à l’échec et plus longue que la modélisation…
5 mars 2021
Développement accéléré de modèles avec H2O AutoML et Flow
Catégories : Data Science, Formation | Tags : Automation, Cloud, H2O, Machine Learning, MLOps, On-premises, Open source, Python
La construction de modèles de Machine Learning (ML) est un processus très consommateur de temps. De plus, il requière de bonne connaissance en statistique, en algorithme de ML ainsi qu’en…
10 déc. 2020